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ABSTRACT 

We a s s u m e  given a ring A wi th  uni t ,  and  a subcomplex  of the  reduced bar  

complex  of A. We a s s u m e  t ha t  this  subcomplex  is a deformat ion  re t rac t  

of  the  whole complex and  thus  has  homology equal  to the  Hochschild ho- 

mology of A, bu t  it will typically be smaller  and  easier to calculate  with.  

We use these  to cons t ruc t  (accordingly small)  deformat ion  re t rac ts  for the  

reduced bar  complexes  of A[t] and Air, t--l]. When A is a Banach  algebra,  

we also do this  cons t ruc t ion  for C~176  A). 

I n t r o d u c t i o n  

In computations of Hochschild homology and its variants, such as cyclic homol- 

ogy, neither the standard Hochschild complex 

�9 .. d 3 * A | 1 7 4  d2*A•A dl*A *0 

nor the reduced Hochschild (bar) complex 

(0.1) . . .  d 3 , A | 1 7 4  d ~ , A |  d ' , A  *0 

is very often used. Typically, a much smaller direct summand of the complex, 

which is quasi-isomorphic to the whole, is used instead. For example, if A is a 
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smooth n-dimensional commutative algebra over a commutative Q-algebra k, the 

complex with zero differentials 

0 . r 0 r 0 ~ k ~ , 0 
~LA/k----~LA/k b �9 �9 �9 

can be realized as a subcomplex of (0.I) via i: f~I/k , A | .~| sending 

1 
fo d f l  A . . .  A d f,- ~ ~ ~ (-1)sgn(a)fo @ fa(1) |  | fa(r) 

aES~ 

and as a quotient of (0.1) via 7r: A | ,4| ' g~A/k sending 

fo |  f l  @ . . . |  fk ~-+ f o d f l  A . . .  Ad f~ .  

Clearly 7roi -- ida~/~, and by the Hochschild-Kostant-Rosenberg theorem, i and 

~r are actually quasi-isomorphisms. Following Kassel [1], we define a deformation 

retract (of the reduced Hochschild complex) to be a complex (X., dx)  together 

with chain maps i.: X. �9 A | .4| and 7r.: A | 4 | , X. and a chain 

homotopy K.: A | 4 | , A | ,~| such that 

~r.oi. = idx~, dr+loKr + Kr-lod~ = idA| --i.o~r~. 

Hitherto, there have been ad hoc computations of deformation retracts, but 

no at tempt to systematize the construction. This paper is a step in the latter 

direction. Given a k-algebra A with unit and a deformation retract for A, we con- 

struct such retracts for A[t] and A[t, t - l ] .  The latter construction can be adapted 

to give, for each Banach algebra A and deformation retract of the continuous re- 

duced Hochschild complex for A, a deformation retract for the ring C~176 A] 

of smooth A-valued functions on the circle. It seems likely that similar methods 

will work for the non-commutative polynomial rings 

A{t} / (a t  - tr 

where r is an automorphism of A. A more difficult question, which we do not 

discuss, is the construction of deformation retracts for A/a  �9 A, where a is an 

element of the center of A. It would be nice to have a general construction 

that specializes to Wolffhardt's complex for coordinate rings of local complete 

intersection. 
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Finally, it should be noted that  the results of this paper do not advance the 

state of the art in computing Hochschild homology since the Kiinneth formula 

already expresses HH, (A[t]) and HH, (A[t, t - 1]) in terms of HH, (A). The results 

which follow do, however, provide information about explicit homotopies that  the 

Kfinneth formula does not. Already in the case of k[x, y], a homotopy contracting 

the reduced Hochschild bar complex to the Hochschild-Kostant-Rosenberg com- 

plex is quite difficult to find. The methods of this paper give a general inductive 

construction. 

ACKNOWLEDGEMENT: I would like to thank Michael Larsen for several useful 

conversations during the composition of this paper. 

1. G o i n g  from a r ing A to  A[t] and  to  A[t, t -1] 

In this section, we will assume given a commutative ground ring k with a unit,a 

k-algebra A, also with unit (so that  if we multiply that unit by any element of k 

we get an element in the center of A), and a complex of k-modules (X., dx) whose 

homology is HH. (A). Typically such a complex arises by tensoring a projective 

resolution of A, as an A | A~ over A | A ~ with A, but this will not 

be used in the calculations. What  we do want is that the complex X. should be 

a direct summand in the usual reduced bar complex calculating HH.(A),  

(1.1) - '-  d3,A|174 a 2 , A |  d~,A ,0 

where A = A / ( k .  1), and 

dr: A | ~| �9 A | .~| 

is given by 

1" 

dr = 
i----0 

d(o(ao | al | "-. @ at)  = a0 @ al |  | aiai+l @ ai+2 @ " -  | at,  

0 < i < r - 1 ,  

d(r)(ao | al @ " .  | at) = a,-ao | al |  | a t -1 .  

In some of the calculations, it will also be useful to define the operator 

b': A | .~| �9 A | ~| (or sometimes b': ,~| * A| given 
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by 

s - 1  

(1.2) b' = ~-~(-1)id(,). 
i=0 

Since the reduced bar complex is itself a direct summand in the original (non- 

reduced) bar complex, by having our complex X. be a direct summand in the 

reduced bar complex we automatically get it as a direct summand in the non- 

reduced complex; the reduced complex is, however, easier to work with. 

The fact that X. is a direct summand in the reduced bar complex means that  

there are chain m a p s / o l d ,  7told, 

(1.3) /old: X~ , A | ,~| 

(1.4) ~r~ A |174 �9 Xr, 

such that 

for every r. 

last expressions, K~ A @ A | 

7r~ ~ ---- idx~, 

iroldo7r old ,~ idA| ) 

Moreover, let us assume given a homotopy K ~ between the two 

, A O A | such that 

(1.5) dr+loK ~ + K~ = idA| --i~176 

We will use this data to obtain similar structures on the rings A[t] and A[t, t -1] 
- - in  particular, we will exhibit direct summands in the reduced bar complexes 

which are quasi isomorphic to the whole respective complexes, but easier to cal- 

culate. The construction will be carried out simulatneously for A[t] and A[t, t-l]. 
Let B = kit], or respectively B = kit, t-l]. 

In either case, the following complex is a free B | B resolution of B: 

(1.6) 0 �9 B | B .(1@t-t| B | B mult B ,0. 

After tensoring over B | B with B, we obtain the complex 

0 , B  ~  ~0. 
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We could tensor the small resolution of A which gave us X with the small 

resolution of B in (1.6) to obtain a resolution of A | B. Tensoring the result- 

ing complex with A | B, we obtain the following complex whose homology is 

HH,(A | B): 

. . .  d (X3|174 d , ( X 2 | 1 7 4 1 7 4  

(1.7) d (XI| G (X0| d,Xo | B ,0 

where for all a E X. and i _> O, 

(1.8) d(at ~) = dx (a ) t  i, d(at i dt) = dx(a) t  ~ dt .  

dt in this context can be looked upon as a place marker of degree 1. Note that  

the homology of the complex (1.7) gives the Hochschild homology of A | B by 

construction in the case where X comes from an (A | B) | (A ~ | B)-resolution 

of A | B, but also works for any complex X. which is a direct summand in the 

reduced bar complex because of the calculations which follow. 

For the new complex (1.7), we define maps 

z~'"ew'. ( X ~ |  G ( X ~ _ I Q B ) d t  . A Q B | 1 7 4  ~ 

given by 

Cew(~ . t~)  = t~ i~  

(1.9) ..ew i (1 | t) *. ( ~ _ ~ t  dt)  = t~i~ * 

V a ~ E X . ,  i_>O, 

Vo~r-1 E Xr-1,  i __> O, 

w h e r e ,  is used to denote the shuffle product, and 

.]1. r . . . .  . A | B Q (A | B) ~ , (X~ | B) @ (X~_I | B ) d t  

given by 

(1.10) 
7c~W (aot~O| nl |  | art nr ) 

, t n o + n l + . . . + n ~ o l d t ' ~  x-~, ~ 

=~ '~ ~ O ~ l | 1 7 4  

+ n~a~tn~176 | al |  @ a , - l )  dt .  

Note that in defining i~ ew we shuffled with 1 |  and in defining r~ ~w we had a 

term nra~t "~~ in which we reduced the exponent by one. In the case 
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of B = k[t, t - l] ,  we could, of course, have shuflied with 1 | t -1 and increased 

the exponent by one instead, but  in making the choice the s y m m e t r y  between t 

and t -1 is broken. The choice has been made in this way so tha t  it would also 

make sense for B = k[t], and so tha t  our formulae for B = k[t, t -1] will restrict to  

formulae for B = k[t] when we view kit] as embedded in k[t, t -1] in the s tandard  

way. 

Direct calculation shows tha t  i new, r new are chain maps. Clearly, 

new .new i new i.old 7r r oz r ( & r t ) =  7r r (tZr (~r)) = tiTr~176 = ~rt  i 

new ,new i 7r r ozr (oz~t dt)  = 71" rnew''/~l; ~r'~ )x . (1 | t)) 

(1.12) = ti+17r~176 * (1 | 1)) + tlr~176 dt  

-- c~rt i dt 

so 

(1.13) n e w  . n e w  = 7r r o~ r id(x.|  

To demonst ra te  tha t  ~,'newor~new ~ id, we will define an explicit homotopy  K new. , 

on the basis of the homotopy  K ~ which we had for the ring A, by 

new n o  K~ (aot |  t n l | 1 7 4  n~) 

~ ( _ X ) j  ~ ~:.___ O i f n j  > 0  = -- I tno+nl  + . . .+nj_  1 +i  
j = l  [ ~=,~j if nj < 0 

(1.14) [(a0 | a l  | 1 7 4  a j - 1 )  * ( 1 |  t)] 

@ ajtnJ -1 - i  | aj+l tnj+l | �9 | a , t  n~ 

+...+n~-lKold ~ + n~art n~ r_ll.a0 Q9 al  | "-" | a t - l )  * (1 | t) 

+ t'~~176 | al @ ' "  | a~). 

new CLAIM: dr+loK new + Kr_ lod  r = idA|174 _zr'newoTrrneW. 

Proof: Set 

F d~+loK~ew + new = - ldW~,r  ~ �9 K r -  1 odr " "new new 

We will show tha t  F(aot n~ | a l t  ~ | . . .  | a~t '~ ) - 0 for all a~ and all the 

values of exponents ni which appear  in B. The proof  will proceed by induct ion 

on r; for each r the proof  will be by induct ion on Inrl, I n~_ l l , . . . ,  Inl], In0h in 

tha t  order. 

(1.11) 

and 
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T H E  C A S E  O F  r :-- 0 :  I n  t h i s  c a s e  w e  m u s t  c h e c k  

new no ? no d l o K  o (aot )=aot _ ~§176176176 ~0 ~u0J ~ 

which holds since dloK~ ld = id--lr~ldoi~ ld. 

T H E  I N D U C T I V E  S T E P ,  r > 0 :  If n r  = n r - 1  = �9 �9 �9 : n l  = n o  : 0 ,  w e  have 

F(ao | al | 1 7 4  a~) 

= (dr+loK TM + K~ - id +i~ ~ (ao @ al @ " "  | a~) = 0 

by the choice of K ~ We prove the general case by induction on the tn~l, in 

three steps: 

FIRST STEP: If nr > 0 and we know that 

F(ao @ al |  |  n~- l )  = 0, 

or if n~ < 0 and we know that 

F(ao |  | 1 7 4  art  n~+l) = O, 

then 

F(ao | al |  @ a~t n~ ) = O. 

Proof." We start  with the case n~ > O. Since all the maps d., K. ~ew, i new, r new 

commute with multiplication of the first coordinate in each monomial by t, 

F(aot  | al  | . . . | a~t n€ = t . F(ao | al |  | a~t n~- l )  = 0 

by the inductive hypothesis. 

Therefore, proving that  F(ao | al | . . .  | a~t '~)  = 0 is equivalent to proving 

that 

F(Zx) = 0 

for 

A = a o | 1 7 4 1 7 4  ' ~ r - a o t | 1 7 4 1 7 4  n~-l .  

We have 

g~ew(A) = ( -1 )  ~ [(ao @ el  |  | a~_t) * (1 | t)] @ a~t n~-I 

. n  --1 T~'old / + a r t  r n r _ l [ a o | 1 7 4 1 7 4  



324 A. L I N D E N S T R A U S S  Isr. J. Math .  

SO 

(1.15) 

dr+loKrnew(A) = ( - 1 )  ~ [b'(ao @ al @ ' . .  @ a t - i )  * (1 | t)] | a, t  ~ - 1  

- aot @ a l @ . . .  | a ~ - l @  a . t  ~ - 1  

- [(ao @ al |  @ a~-2) * (1 @ t)] @ a~_la~t n~-I 

+ ao @ a l @ " "  |  @art  ~ 

- ( a , , t ~ - l a o  |  @ " .  |  (1@ t) 

+ a~t~*-ld~oK~ | al @ ' . .  @ a t - l )  * (1 | t). 

Here b' is the operator defined in (1.2); we are using the fact that the Hochschild 

boundary map d. satisfies the Leibniz rule with respect to the shuffle product , ,  

and the fact that dl(1 @ t) = 0. 

Now by a similar calculation, 

(1.16) 
K~e]'od~(A) = ( - 1 )  ~-1 [b'(ao | al |  | a~-l) * (1 | t)] | a~t n~-I 

+ aot | al | ". �9 | at-1 | a~t n~-I 

- [(ao @al @ ' " @ a ~ - 2 ) *  (1@ t)] |  n~-I 

- a~Kn~(O)  + ar tn~- lK~ | al |  | a,.-1)) * (1 | t) 

+ (-1)~-la~tn~-lK~ | al |  | a~-2) * (1 | t). 

So 

(1.17) 
(d~+loK~ ew + K~ne~'od~) (A) = - a o t  @ al |  @ a t -1  | art n~-I 

+ ao @ al |  @ ar-1 @ a~t n~ + a~tnr- ld~oK~ | al |  @ a~- l )  

Jr artn*-lK~ | al |  | a t - l ) )  * (1 | t) 

+ | |  | * (1 | t) 

= - aot | al  |  | ar-1 @ a , t  n~-I + a0 | al |  @ at-1 | a~t nr 

- a~t ~ - 1  ((id - d ~ o K ~  - g~ | el |  | a , -1))  * (1 | t) 

/ /old oTrOld r a = A  - art n ' - I  [ r-1 r-1 I, 0 | al @ ' "  @ a t - l ) )  * (1 | t) 

by the choice of K ~ But since 

-new new ~r ~ ( A ) =  'new.' -n,.-1 old," ~r (a~r ~ r r _ l ( a o | 1 7 4 1 7 4  

{i old o~old [ a = a r  t n ~ - l [ r - 1  r - i t  0 | 1 7 4 1 7 4  
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this calculation shows exactly tha t  

F ( A )  = (d~+log~ ew + g~neWlod~ - id +i~Worr~ ~W) (A) = 0. 

If nr  < 0, we set 

(1.18) A = a o @ a l | 1 7 4  ~ + l - a o t | 1 7 4  |  "~ 

and note tha t  

KneW(A) ---- ( - 1 )  r [(ao | al |  | a~ - l )  * (1 | t)] | a~t "~-1 
(1.19) 

a t n ' - 1 K  TM ta  . . .  --~ r r _ l  I, 0 | 1 7 4  | 1 7 4  

Similar formulae hold for K~Wod(0,  0 < i < r (and d(~)(A) = 0), so the 

exact argument  in formulae (1.15), (1.16), and (1.17) carries through and gives 

us F ( A )  = 0. We then use the fact tha t  F ( a o  | a l  @ " "  | a~t ~ + 1 )  = 0 to obtain  

F ( a o  | a l  @ " - " | a ~ - I  @ a r t  "~ ) = t - l  F ( a o t  @ al  @ " - " | a ~ - i  | a~t "~ ) = O. 

SECOND STEP: If  1 _< j < r -- 1, and nj  > 0 and we know tha t  

F ( a o  | a l  | "'" | a j - 1  @ a j t  n~- I  | a j + l t  '~'+~ | "'" @ a~t ~ )  = O, 

or if n j  < 0 and we know tha t  

F ( a o  | al  |  | a j - 1  | a j t  n j+l  | a j + l t  ni+~ | 1 7 4  a~t n~ ) = O, 

then 

F ( a o  | a l  | "'" | a j - 1  @ a j t  ~ | a j + l t  '~+1 @ "" �9 | ar t  ' ~ )  = O. 

Proof'. As in the first step, we begin by considering the case of n j  > O. 

F ( a o t  | a l  |  @ a j - 1  | a j t  n~ - I  | a j + l t  ~j+l @ ' "  | a~t "~ ) 

= t �9 F ( a o  | al  | . . .  | a j - 1  | a j t  '~j-1 @ a j + l t  ~+~ | "'" | ar t  '~ )  = 0 

so we set 

A = ao | a l |  "- | a j - 1  | a j t  ~ j - 1  | aj+lt,~j+l @ . . .  @ artn~ 

-- aot | a l  | �9 " @ a j - 1  @ a f  b - 1  | a j+l  tnj+l @ �9 "" @ art  n€ 
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and prove that F(A)  = 0. 

K-eW(A) = 

( -1 )  5 [(ao | al |  | aj-1)  * (1 |  t)] | ajt  nj-1 | aj+xtnj+t |  | a~t,~, 

and therefore we get that 

(1.20) 
d~+loK~"ew(a) 

=(-1)J[[b'(ao |  | at_x ) * (1 | t)] | ajt  '~j-1 | aj+xt '~j+~ |  | a , t  n~ 

+ ( - 1 ) J - l a o t  | ax | .." | a j -x  | ajt  '~ -x  | aj+l tnj+l | " "  | a~t n~ 

+ ( _ l / + X  [(ao |174  a~-~) * (1 | t)] | a~_xajt~, -x | a~+xt=~+ ~ |  | a , t  ~ 

+ (-1)Jao | " -  | aj-x  | a j t  nj | aj+x tn~+l | . . .  | art n" 

+ ( -1 )  j [(ao |  | a j -1)  * (1 | t)] | b'(ajt '~'-1 | aj+xt =j+~ |  | a~t ~ ')  

+ (-1)~+Xa~t n~ [(a0 |  | a j_])  * (1 | t)] | ajt  '~j-1 |  | a , _ l t  ~-~] 

and that 

(1.21) 
gn_~od,(A) 

= ( - - 1 )  j - 1  [b ' (ao |  | a j -1 )  * (1 | t)] | aj t  n~-I  | aj+ltn~+~ |  | artn~ 

+ [(ao |  | a j -2)  * (1 | t)] | a j_ ta j t  '~j-1 | aj+ltnj+~ |  | a~t n. 

- [(ao |  | a~_x) �9 (1 | t)] | b'(a~tn~ -1 | ~j+ltn~+ ~ |  | a , t  ~ )  

+ (-1)J+~a~t '~ [(ao |  | a j - t )  * (1 | t)] | ast '~-x  @. . .  | a ,_xt  '~-~. 

Adding the last two equations, we get 

n e w  (d~+loK~ ew + Kr_iod~)(A ) = A. 

�9 n e w  and new show that Inspection of the formulae for % % 

�9 new new ~r o7r, ( A ) = O  

and thus we obtain the desired equality F(A)  = 0. 

When nr < 0, we change the definition of A as we did in (1.18); the calculation 

analogous to (1.19) holds, and so the proof described in (1.20) and (1.21) gives 

F(A)  = 0. 
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THIRD STEP: For any no _> 0, 

F(ao tn~ | alt  nl @. . .  | art n~) = O. 

Proo~ 

F(aot n~ | alt  n~ |  | a~t n~ ) = tn~ F(ao | air m |  | a~t n~ ) = 0 

by the previous steps. | 

COROLLARY 1: I f  the complex X is a deformation retract of the reduced bar 

complex calculating H H.(  A ) for A an algebra as described before (1.1), then the 

complex 

�9 .. d ,X3[ t ]~X2[ t ld t  d , x 2 [ t ] $ X l [ t ] d t  d.Xl[t]@Xo[t]dt  a*Xo[t] , 0  

with d induced by dx  as in (1.8) is a deformation retract of the reduced bar 

complex calculating H H, ( A [t]) . 

COROLLARY 2: If  the complex X. is a deformation retract of the reduced bar 

complex calculating H H,(  A ) for A an algebra as described before (1.1), then the 

complex 

�9 .. a ,X2[ t , t -1 ]OXl[ t , t -1 ]d t  d , x l [ t , t -1 ]@Xo[ t , t -1 ]d t  d,Xo[t,t-1] . 0  

with d induced by dx as in (1.8) is a deformation retract of the reduced bar 

complex calculating H H, (Aft, t -  1]). 

2. Going  f r o m  a r ing A to  COO[S1;A] 

In this section we start with a Banach algebra A, and consider the extension 

of A which we get by taking COOLS1; A], the space of infinitely differentiable 

maps from the circle to A. When equipped with the metric constructed from 

the Sobolev-type norms (supremums of f and finite numbers of derivative), and 

with pointwise multiplication, C ~ [$1; A] becomes a Fr~chet algebra. Note that  

in this case the construction cannot, therefore, be iterated. A is embedded in 

C ~ [$1; A] as the sub-algebra of all constant functions. 

The Hochschild homology of such an algebra A is huge, and most of the classes 

in it are not boundaries because the 'elements' which 'should' map to them by 
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the boundary map of the usual Hochshcild complex are actually infinite sums of 

tensored monomials. To correct this, we will use continuous Hochschild homology, 

which is defined with the topological projective tensor product Q~ in place of the 

usual | (see [2], section 5.6.2). ~ has the property that 

(2.1) c (v • v)  

for any compact smooth manifold V (where C~(V)  refers to the ring of smooth 

complex-valued functions). Fourier expansion shows that for any n-torus ~ and 

any Banach algebra A, 

(2.2) C~(T~; A) -~ C~(T")+,rA. 

From (2.1) and (2.2), we obtain 

COOLS1; A]~-(~+I) ~ C~( 'Y"+I;A+,A+, . . .+ ,A) .  Y 
r+ l  times 

We define 

s,: C'~[S'; A] +~(~) ~- C~(T~ ; A+,A+~ " .+,~A,) 
r times 

. C~176  A ] + - ( r + l )  ~ C~('t~'+I;A+.A+....+.A), 
r + l  times 

for 0 < 1 < r - 1, by letting 

(si(fo @ f i G ' "  G f~-l))(to, t l , . . . ,  t~) 

= fo(to) G A(t l )  G " "  G f~(t~) G 1 G fi+l(ti+2) G " "  G L- l ( t r ) .  

This gives us the formula 

(~ I r--1 / 
A] +'(r) ---- C~176 ; A+~A+~. . .+~A) / \ ,~o  Im(s,) C~176 A]~,rCoo[S1; 

for the modules appearing in the reduced bar complex. 

The boundary map for this reduced bar complex is d~ = ~-~=o(-1)id(i), where 

for 0 < _ i < r ,  

(d(0 ( foG""  G y,))(to, t l , . . . ,  tr-1) 

= fo(to) G fl( t l )  G " "  G fi(t~)f~+l(t~) G fi+2(ti+x) G " "  @ f~(t~-l) 
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and 

(d(~)(fo@"" '| f~))(to, t l , . . .  ,tr-1) = fr(to)fo(to)|174 "| "| f~ - l ( t~ - l ) .  

The argument which shows that  the reduced bar complex has the same homol- 

ogy as the standard bar complex when we use @~ is identical to the argument 

when we use @--  the kernels of the reduction map form an acyclic complex. 

We assume, as usual, that  we have a complex X. which is a direct summand 

in the reduced bar complex of A, quasi-isomorphic to the whole but easier to 

calculate with, along with inclusion and projection maps /old and 7r ~ and a 

h o m o t o p y  K ~ 

We construct a new complex and prove its homology to be HH, (C~[S1 ;  A]), 

the complex 

. . .  d , c c ~  @Cr d.-C~(S1;X1) 
(2.3) 

eC~(S1;Xo)dt  d . C ~ ( S 1 ; X 0 )  , 0  

where for all f :  S 1 " X., t E S 1 

(d(f))(t) = dx(f(t)), (d(f dt))(t) = dx(f( t))dt .  

dt is again a formal place marker. 

i new and ~r new are also defined analogously to what we have done before- -  for 

f :  S 1 , Xr and ( t 0 , t l , . . . , t r )  C 'U +1, 

(inew(f))(to, t l , . . . ,  tr) ---- i~ 

and if we write i~ = ~-~:le b(~) | b~a) |  @ b(~.), 

(i~ew ( f  dt))(to, t l , . . . ,  t , ,  t ,+ l )  

r t 
bio) (0) h(o) ..  b(:) 

= E ( - i )  Eb~a)|  | 1 7 4  | 1 7 4  | 
i----O ' a--1 

where each t~+l is regarded as an element of A via the inclusion of S 1 in C as 

the unit circle and the inclusion of C in A as multiples of the unit element of A. 

For a monomial f0 | fx |  | fr:  ,[,~+1 ~ A6 ,A@, . . .  ~ ,A,  we let 

(71"new(f0 | fl |  | f r ) ) ( t )  

=Tr~ | fx(t) |  | f~(t)) 

+ d-~{~(t)~r~l(fo(t) | A(t) |  | f r - a ( t ) )  d t .  
t a b  
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The desired relation, 

Isr .  J.  M a t h .  

new 'new 
7r r oz r = idc~(s1;X~)~C~(S~;X~_~)dt, 

still holds, by calculations exactly analogous to (1.11) and (1.12), but it is a bit 

new above, we are harder to see this. The point is that in our definition of ~r~ 

looking at monomials that take ( to , t1 , . . .  ,t~) to fo(to) @ f l ( t i )  @.-" | ]~(t~), 

and the form in which i~ew(f) is given is misleading in that it does not consist 

of monomials of that form. To get it into that form, we would take i~ew(f(to))  

and break it, using Fourier expansion, into monomials of the form 

go(to) | alt'~' | a2t~ ~ @ . . .  | a~t'~ ~ = go(to)t'~) 1+'~2+ ..... @ al @ a2 @ . . .  | a ,  

(using the fact that  to is just a complex number which can pass through the 

tensor). This presentation makes it clear why, on the image of st'new, ddt f~ = 0 

unless f~ = t~. 

It remains to show that z~'new olr~new _"~ id, by finding a suitable homotopy K new. 

As motivation for the construction, note that  we can view A[t, t - i ]  as embedded 

into C~ by looking at t as the inclusion map S 1 r C .  1A and at t -1 as 

the composition S 1 t~l/t>S1 r C .  1A. Moreover, because A[t, t -1] consists of 

finite polynomials, its (regular) tensor products with itself embed in the topolog- 

ical projective tensor product of C~176 A] with itself, and all the constructions 

and maps we have defined commute with these embeddings. Thus to find the 

homotopy K new for C~176 A] we adapt the homotopy which was used in the 

previous section. 

For any C ~ function f on the circle, we can use the Fourier expansion f ( t )  = 

~-~=-oo a~ t~ to write 

f = f - + a o +  f + 

where 
- 1  

f-(t)= E ant'~' f + ( t )  = a, , t" .  
n = - ~  n = l  

This is necessary because of the asymmetry between t and t -1 in the formulae of 
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the previous section. We set 

(K~eW(fo @ f l  |  | fr))(to, t l , . . . ,  tr) 
r j--1 

= E E (-x)h+l  [fo(to) | fl(to) |  | fh(tO) @ th+l  | fh+l(tO) 
j=l h=O 

|  | Zs-~(to) | l[(to) - Z?(tj+l) | b , ( t j + ~ )  |  | l~(t~+,) 
to - tj+~ 

- -  fo(to) | fl(tO) |  | fh(tO) | th+l | fh+l(tO) 

|  @ fj- l( tO) | fT( to)  -- f j - ( t j+l)  @ fj+l(tj+2) |  Q.fr(tr+l)] 
to - tj+l 

d "  r--1 
4 ~ 4 ~ b(:) + -'-~-(to) E ( - - 1 )  E | 1 7 4  |  

h=O a=O 

+ K~ @ fl( to) |  @ f~(to)) 

where the difference quotients (f(to) - f ( t j+l) ) / ( to  - tj+l) are defined as i f(to) 

if to = tj+l, and 

e 
K~ | f l( to) |  | f~-l(to)) = E b  (~) |  | b~ ~) @ " "  @ b (~). 

a---O 

This definition coincides with (1.4) on monomials f0 | f l  | "'" | f~ where 

f i(t)  = air n' for all 0 < i < r and t E S 1, so we know that  on the copy of 

A[t, t -1] | A[t, t - l ]  | which is embedded inside C ~176 [$1; A] | C r162 [$1; A] ~'(~) we 

have 

(2.4) d~+loKnew + new = ld-z~ o~r~ . K r -  l ~ " "new new 

Note however that  all the functions in this equation are continuous as functions 

from the reduced bar complex to itself (with respect to the Fr~chet topology). 

Fourier expansion shows us that  the embedded copy of A[t, t-1] | A[t, t-1] | on 

which (2.4) holds is dense in C~[S1; A] | C~[S1; A] ~'(~). We deduce that  (2.4) 

holds on all of Cr162 A] | C~[S1; A] ~(~),  and so K new is indeed the desired 

homotopy. 
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